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Introduction

Following the classification of finite simple groups, one of the major problems in
finite group theory is the determination of the maximal subgroups of the almost
simple groups—that is, of the groups X such that L<X < AutL for some
non-abelian finite simple group L. In the investigation of the maximal subgroups
M of X, the analysis is often divided into two parts: the local case, in which
M = Ny(E) for some elementary abelian subgroup E of X; and the non-local
case, in which the socle of M is a direct product of non-abelian simple groups. In
this paper we determine the local maximal subgroups of the finite exceptional
groups of Lie type in the families G,, F,, E,, E;, Eg, *G,, *F, and *E;. (The
maximal subgroups of the other families of exceptional groups, *B, and *D,, can
be found in [29,18].) It is a consequence of our main result, Theorem 1 (stated in
§1), together with the results of [23] and work on the other simple groups
discussed in [21, I-III], that the local maximal subgroups of the almost simple
groups are all explicitly known, apart from the 2-locals of the sporadic groups BM
and M. Theorem 1 is used in the proof of [22, Theorem 2], where the study of
maximal subgroups of finite exceptional groups of Lie type is reduced to the case
of almost simple subgroups. We remark that the ‘maximal local subgroups’ of X
form a larger class than the ‘local maximal subgroups’, and we make no attempt
to determine the former class.

For most of our proof of Theorem 1 we work in the simple algebraic group G
corresponding to the finite exceptional group L. Our methods also yield the
determination of the local maximal subgroups of simple algebraic groups of
exceptional type over algebraically closed fields. The results are stated in
Theorem 2 (the positive-dimensional subgroups) and Theorem 3 (the zero-
dimensional subgroups). Theorem 2 is used in [22, Theorem 1], which determines
all positive-dimensional maximal subgroups of G.

One of the local subgroups occurring in the conclusion of Theorem 1 is a
subgroup 5°.SL;(5) of E4(p“) (see Table 1). This turns out to be non-maximal
when p =2, because it lies in a subgroup L,(5) of Eg(4) in that case. This
embedding L,(5) < Ex(4), which may be of independent interest, is exhibited
in §5.

Finally, we remark that our proofs are all independent of the classification of
finite simple groups.
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1. Statement of results and notation

Let L be a finite exceptional simple group of Lie type over F,, where g = p*“
and p is prime. As described in [27], there is a simple adjoint algebraic group G
over the algebraic closure of F,, and a surjective endomorphism o of G such that
L=0°(G,). Also G,=Inndiag(L), the group generated by all inner and
diagonal automorphisms of L.

Let X be a group such that L< X <AutL, and let M be a local maximal
subgroup of X. Then M = Nx(E) for some elementary abelian r-subgroup E of X
with r prime. Choosing E minimal, we may assume that

M normalizes no proper non-trivial subgroup of E. (*)

Assume that E<G, (the case where Es G, is discussed in the note after
Theorem 1 below). If r = p then by [5, 3.12] (see also [8]), M lies in a parabolic
subgroup of X. Otherwise, we may take it that one of the following holds:

(I) E lies in a o-stable maximal torus of G; or

(II) M normalizes no non-trivial subgroup of a torus of G,.
In Case (I), let D =Cg(E)°. Then D is a o-stable closed connected reductive
subgroup of G containing a maximal torus, and M = Ny (D, N L). In the situation
of the previous sentence, we say that M is a subgroup of maximal rank in X (and
also that D is a subgroup of maximal rank in G). The subgroup D has a root
system relative to the maximal torus which is a subsystem of the root system of G.
The possibilities for such subsystems are given in Tables A and B of [23, § 2], and

the results of [23] include a complete determination of the maximal subgroups of
maximal rank in exceptional groups of Lie type.

Theorem 1 determines all the subgroups M in Case (1I).

THeEOREM 1. Let L, X, G be as above, and let M = Nx(E) be a local maximal
subgroup of X, with E < G,, E an elementary abelian r-group. Then either

(1) M is a parabolic subgroup or a subgroup of maximal rank (determined in
(23]), or

(XI) the pair (L, E) is as in Table 1; in each case r ¥ p and there is just one
G,-conjugacy class of such subgroups E.

In Table 1 we use the notation E§(q) for E«(q) if e = +1, and *E4(q) if e = —1.
Also for a prime r, we write just 7 for an elementary abelian group of that order.

TaBLE 1

L E Cg,(E) Ng (E)/Cg, (E) Conditions
w1 o

2 7
F{p) 3 E . SL,(3) p=5
EY(p) 32 special, of+order23 SL4y(3) e=%1,3|p—¢ p=5
E,(q) 25 E X (PQg(q).2°) S5 PQ{(q).2* = Inndiag(D,(q))
Eqo(p) 2 special, of order 2% SLs(2)

. -
EGh E SL(S) pras, o= H31R
,if 5|p

2Eq(2) 3 E X Gy(2) N, (E) = Us(2) X Gy(2)

E,(3) 2? E X F(3) N (E)= Ly(3) X F|(3)
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REMARK. In the maximal rank case in (I), our proof in fact shows that M
normalizes a non-trivial subgroup of a torus of G, (see Lemma 2.2).

Constructions of the subgroups in Table 1 can be found in the proof of
Theorem 1 in § 2. It is of interest to note that the condition that p #2, when E is
3% or 5% and L is F(p) or E4(p*), occurs because of the embeddings L,(3) < Fy(2)
and L,(5) < Eg4(4); the subgroups L,(3) and L,(5) contain N,(E) in each case.
The embedding L,(3) < Fy(2) is known [11, 25], but the fact that L,(5) < Ey(4) is
new, and we give a proof in § 5.

Note. In Theorem 1 we assume that E<G,. When E<$G,, we have
ENG,=1 by (*), and so MNL=C,(«) for some automorphism ae€
(Aut L)\G, of prime order r. Then « is a field, graph-field or graph automorph-
ism (see [16, § 7]). The conjugacy classes of such automorphisms are known, by
[16, §7; 3, § 19] and Proposition 2.7 of this paper. The centralizers arising are
subgroups of the same type as L over a maximal subfield of F,, subgroups *Gy(q),
*Fy(q), E«(q*) in Gy(9), Fi(q), Eq(q), and subgroups Cy(q) (with g odd) and
Fq) in EX(g).

Next we turn to algebraic groups. We prove Theorems 2 and 3, which
determine all local subgroups (that is, normalizers of finite abelian subgroups) of
simple algebraic groups of exceptional type over algebraically closed fields,
subject to certain maximality conditions. Theorem 2 handles the subgroups of
positive dimension and Theorem 3 those of dimension zero.

THeorReM 2. Let G be a simple adjoint algebraic group of exceptional type
(G,, F,, Eq, E; or Ey) over an algebraically closed field of characteristic l. Let S be
a subgroup of AutG such that D =(SNG)" is a non-trivial closed connected
subgroup of G, and assume that

(1) Ng(D)/D is finite,
(2) for some prime r, O,(C;(D))#1, and
(3) D is maximal among closed connected S-invariant subgroups of G.

Then either D is parabolic or a subgroup of maximal rank, or G=E,;, |#2,
D = D, and N;(D) = (2*> X D). S; (with Ci(D) =2% as in Table 1).

THEOREM 3. Let G be as in Theorem 2, and suppose A is a subgroup of G
satisfying the following conditions:

(a) A is an elementary abelian r-group, where r is prime and r #1,

(b) Ng(A) is finite,

(¢) Ng(A) normalizes no proper non-trivial subgroup of A,

(d) Ng(A) is maximal with respect to (a), (b) and (c),

(e) there is no proper non-trivial connected Ng(A)-invariant subgroup of G.
Then A is given in Table 2, and is uniquely determined up to G-conjugacy.

Theorem 3 generalizes to arbitrary characteristic a result stated for characteris-
tic zero in [1]. We give the proof, which runs along the same lines as that of
Theorem 1, in § 4. The subgroups A in Table 2 are called Jordan subgroups of G
in [1], and a result similar to Theorem 3 concerning Jordan subgroups is proved in

(7).
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TABLE 2
G A Ng(A)
G, 23 23.SL4(2)
E, 3? 3 .SLy(3)
E 3? 3+3 SL,(3)
Eg 25 25+10 51.4(2)
53 5%.8Ls(5)

CoroLLary. Let G be as in Theorem 2.

(1) The local maximal subgroups of G of positive dimension are those given in
Theorem 2.

(i) Suppose H is a finite local subgroup of G which is contained in no proper
closed connected subgroup of G. Then H is one of the groups Ns(A) in Table 2.

The corollary is immediate from Theorems 2 and 3.

The actions of the local subgroups Ng(A) in Table 2 on the Lie algebra L(G)
of G yield interesting orthogonal decompositions of L(G), which are studied in
6,19].

[ The layout of the rest of the paper is as follows. Sections 2, 3 and 4 contain the
proofs of Theorems 1, 2 and 3, respectively. Finally, in §5 we exhibit the
embedding L4(5) < Ex(4).

2. Proof of Theorem 1

Assume the hypotheses of Theorem 1. Thus G is a simple adjoint group of
exceptional type, L = 0”'(G,) is a simple group of Lie type over F,, ¢ =p®, and
X is a group with L<X =<AutL. Also M = Ny(E) is a non-parabolic local
maximal subgroup of X normalizing no non-trivial subgroup of a torus of G, and
also normalizing no non-trivial proper subgroup of E, where E is an elementary
abelian r-subgroup of G, consisting of semisimple elements. Notice that we are
not excluding the possibility that M is of maximal rank here; in fact, Lemma 2.2
rules this out (see the Remark after Theorem 1).

We introduce some further notation. Let G be the simply connected cover of
G, let E be the full preimage of E in G, and let g be a preimage of an element
g € G. Write also E¥ = E\{1}, and W = W(G), the Weyl group of G, and denote
by T; a torus of rank i in G.

If X is a connected reductive subgroup of G, define a homogeneous factor of K
to be the product of all the simple connected normal subgroups of K in a single
(Aut G)-conjugacy class; if Z(K)°# 1, define Z(K)° also to be a homogeneous
factor. Thus K is the commuting product of its homogeneous factors.

Note that Aut L is generated by inner, diagonal, field and graph automorph-
isms (see [9, 28]), all of which extend to automorphisms of the abstract group G
which commute with 0. Thus there is a subgroup X of Ca. (o) such that
X =2X/(o), and so X acts on the set of o-stable subsets of G. For a o-stable
subset Y, we write Nx(Y) for the stabilizer in X of Y.

We now embark upon the proof of Theorem 1. This is carried out in a series of
lemmas (2.1 to 2.17). Lemmas 2.1 to 2.9 are concerned with restricting the

structure of Cg(e) for e € E¥. The remaining lemmas deal separately with the
various possibilities for G and r.
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Lemma 2.1. Suppose that M{o) normalizes a non-trivial, proper, connected,
semisimple subgroup K of G. Then one of the following holds:

@) [K, E]=1;

(i) g =3 and K has components of type A, such that if C is the product of these
components then E<107(C,)=L,(3)", a direct product of x copies of
L,(3); in particular, the rank of E is even;

(iii) g =2 and K has components of type A, such that if C is the product of these
components then ELO” (C,) = Us(2) for some y = 1.

Proof. As K,#1, by the maximality of M we have M = Ny(K,)= Ny(E).
Thus K, <M and E < N(K,). It follows that

(K,, E]<K,, [K,, E]<K,NE.

Assume first that every factor of K|, is quasisimple, where K, means (K,)'. We
show that conclusion (i) holds. Since [K,, E]<!K,, we deduce that [K,, E]<
Z(K;), so that [K,, E, K,]=[E, K,, K;]=1. By the three-subgroup lemma,
[K,, E]=1. Now let e € E¥. Then K< Cy(e).

We claim that Ck(e) is reductive. For if not, let Q = R,(Ck(e)), the unipotent
radical of Ck(e). Then K,<Ni(Q)=<P, where P is the canonical parabolic
subgroup of K determined by Q as in [5]. Moreover P is o-stable and P, is a
parabolic subgroup of K,. But K normalizes R,(P), and R,(P), < O”'(K,) =
K3, so R,(P),<K,, a contradiction. Thus Ck(e) is reductive, as claimed. Now
K,=(Ck(e),)', so, in particular,

IKolp = 1Cx(€)al,p-

Since |K,|, is ", where n is the number of positive roots in the root system of K,
we deduce that Cx(e) = K. Hence [K, E] =1, giving conclusion (i).

Now suppose that (i) fails. Then some factor of K, is not quasisimple, so is of
type A(2), A1(3), 2Ax(2) or *B,(2). If there is a factor A,(2) or *B,(2) then the
product A of all such factors is M-invariant, so M < N(O,(A)) where r is 3 or 5;
but O,(A) intersects each factor in a cyclic group, and so lies in a maximal torus
of G, contrary to our hypothesis on M. If there is a factor A,(3) or ?4,(2) of the
form SL,(3) or SU;3(2) then M normalizes the product of the centres of all such
factors, which again lies in a torus. Thus K must have components of type A, or
A,, such that if C is the product of these components then O”'(C,)= L,(3)" or
Us(2)” for some positive integers x, y. Moreover, if [C,, E]=1 then |C,|, =
|[Cc(e)sl,, and hence as above, [C, E]=1; consequently [K, E]=1, which
is false. So [C,, E]# 1. Since M normalizes C, and E, we have 1#[C,, E]<
C,NE, and hence £ < C, as M normalizes no proper subgroup of E. Thus (ii) or
(iii) holds.

Lemma 2.2. Suppose that M{ o) normalizes a connected subgroup D of G, such
that D is normalized by a maximal torus of G. Then D is 1 or G.

Proof. Suppose that D is not 1 or G, and take D maximal with respect to the
hypotheses of the lemma. Let T be a maximal torus in Ng(D). f Q =R, (D) +#1
then M{0)<Ng;(Q) <P, where P is the canonical parabolic subgroup of G
determined by Q as in [5]. But then M normalizes the parabolic P,, so M must be
parabolic, a contradiction.
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Thus D is reductive, so D =D’'Z with D’ semisimple and Z = Z(D)°. The
maximality of D implies that D = (DCg(D))°. We claim that DT < DCq(D): for
DT is reductive and so corresponds to a subsystem of roots relative to T, from
which the claim is clear. Thus T < D, and hence Z = C(D)’. Since M normalizes
Z, our hypothesis on M forces Z, = 1. Moreover, we may take T to be o-stable,
by [26,1, 2.9].

Suppose that D’ # 1. Since T < D, components A, and A, of the root system of
D' (relative to T) are generated by root subgroups of G, so cannot have o-fixed
point groups of the form L,(3) or Us(2). Thus by Lemma 2.1 we have
[D', E}=1. Note also that Z#1, since otherwise T<D =D', giving E<
Cs(D")e<Cs(T),=T,, contrary to hypothesis. Also Z(D)<C(T)=T. We
have now

D=D'Z, D'+#1, Z+1.

We next claim that Cg(D')=Z(D’)Z. To see this, let D'=H, ... H, be the
expression for D' as a commuting product of its homogeneous factors H; (see the
beginning of this section for the definition). By the maximality of D, for each i,
Cs(H,)° is the product of those H; with j # i, and also C5(Z)° = D. Moreover, the
rank of D' is less than the rank of G, as Z # 1. Let A be the root system of D'.
The possibilities for A satisfying the above conditions are not hard to determine,
using the lists of all closed subsystems of the root system of G given in [10, Tables
7-11]. Indeed, the possibilities are as follows:

G l G, F Eq E; Ey

A I none B3 (p Odd) D5,D4, 4A1, 2A1+A3 E(), A(,, 3A2 D7, A7, 2143

Assume that G # F,. Then Cy(A)=1 (see [10, Tables 7-11]). Since Ng(D) <
DNg(T), this forces Cu(D')=Cr(D')=Z(D')Z, as claimed. And if G=F,
A= B; and p is odd, then M normalizes Z(D) = Z,, contrary to hypothesis. This
establishes the claim. It follows that E<Cq(D'),=(Z(D")2),<T,, a
contradiction.

We have now shown that D' =1, and so D = T. Consequently M normalizes
T,, so by hypothesis we must have T, = 1. By [26,11, 1.7], |T,| =f(q), where fis
the characteristic polynomial of some w € W acting on the associated Euclidean
space. It follows that w=1 and ¢ =2, so that M N G, =W. Now for G # G,,
E<IW forces r = q =2, a contradiction. And if G =G, then L= G,(2) and M is
clearly non-maximal. This completes the proof.

Lemma 2.3. Suppose that K is a connected subgroup of G normalized by M{ o).

Then K is semisimple and Z(K)=1. In particular, C4(E)" is semisimple with
trivial centre.

Proof. First, K is reductive: for if not, we can use [5], as at the beginning of
the proof of Lemma 2.2, to show that M is parabolic, a contradiction. Thus
K =K'Z(K) with K' semisimple and Z(K) contained in a torus. We must have
Z(K)=1 by Lemma 2.2. The result follows.

LemMa 2.4. (i) If e€ E® then E= (e N E).

(ii) ris 2, 3 or 5. Moreover, ris 5 only if G = Eg.

(iii) The rank m(E) of E is at least 2. Further, if (G, r) is not (E, 3) or (E, 2)
then m(E)=3.
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Proof. Part (i) is immediate from the hypothesis that M normalizes no proper
non-trivial subgroup of E. By assumption, E does not lie in a torus of G. Hence
(ii) follows from [26, II, 5.8 and 5.11], as the torsion primes for G (see [26, 1, 4.4])
are 2, 3 and 5, with 5 occurring only for Es. Finally, for (iii), suppose that
E={e, f) and (G, r) is not (Eg, 3) or (E;,2). Then Cg(e) is connected, by
[26,11,4.6]. Hence there is a torus of Cg(e) containing f and e, again a
contradiction. Thus m(E) = 3, as required.

Lemma 2.5. (i) Co(E) contains no normal torus.
(ii) Let e e E*. Then Cs(e) does not contain a central torus. Moreover, if
Cc(e) contains a normal torus then E % Cg(e)’.

Proof. Part (i) is immediate from Lemma 2.3. Part (ii) follows from (i), since if
T is a torus in Z(C(e)) then T < Z(C(E)).

The possibilities for the centralizers in G of semisimple elements can be
calculated using {16, 14.1] and its proof. Provided (G, r) is not (Eq, 3) or (E;, 2),
Cs(e) is connected, and hence has no normal torus by Lemma 2.5(ii). From these
observations we deduce:

LemMa 2.6. For e € E®, the group Cg(e) has one of the structures given in
Table 3 below. In the table, w, and wy denote elements of W = W(G) of orders 2
and 3, respectively.

TABLE 3
G r=2 r=3 r=5
GZ A]"A] AZ
F, A °oCyor B, A0 A,
E, A As (Ay°Az0A4,5)(w3) or T,D(ws)
E, Aj°Dg, Ay(wy) or TiE((wy) Ay As
Eq A°E;or Dy A,oE, or Ay Ay A,

In order to restrict further the possibilities for C;(e) (e € E¥), it is convenient
to handle first the local subgroups Us(2) X Gy(2) in *E¢(2) and L,(3) X F(3) in
E,(3) given in Table 1 of Theorem 1. For this we require a proposition
concerning graph automorphisms of groups of type A, and E.

ProPOSITION 2.7. Assume that p is odd and that Y is a simple adjoint algebraic
group of type A,,_, or Eq over the algebraic closure of F,. Let v be the standard
involutory graph automorphism of Y given in [9, Chapter 12} (with centralizer C,
or F, respectively). Then there are precisely two classes of involutions in YT, with
representatives T and th, where h is an involution in Y. The connected centralizers
of 1, th have types C,, D, if Y =A,,_,, and types F,, C, if Y = E,.

Proof. Let ¥ be the simply connected cover of Y. Pick y € Yz. By [27, 7.5], v
normalizes a Borel subgroup B of Y and a maximal torus T of B. Moreover
N3 (y(T) N Ny (B) = T(5) with J a conjugate of 7, so we may take d = T and
y = 1t for some t € T. Further, T is the direct product of 1-dimensional tori T,
one for each fundamental root a of Y.
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Suppose that Y = E,. Here 7 interchanges two pairs of groups T, and fixes the
other two. Write T = T,T;, where T, (respectively, T;) is the product of tho.se.: T,
not fixed (respectively, fixed) by 7, and corresponding to this decomposition,
write ¢ = 1,4 Since 7 has order 2, 7 is conjugate to 7, by an element of.T, SO we
replace 7t by 7t Now 7 =1 and # lies in the product of the two fixed tori 7,, so ¢
is contained in a subgroup A, centralized by 7. All involutions in this A, are
conjugate. Thus y is conjugate to either 7 or w,, where t, is the involution in a
fundamental subgroup SL, centralized by 7. Conjugating by an element of the
Weyl group of Cy(7), we see that & can be replaced by the highest root .
Finally, we identify Cy(7) and Cy(tt,,). We know that Cy(7) = F,. We now claim
that Cy(tt,,) = C,. First note that Cy(7) contains D =(A,)*, and this can be
chosen with t,,€ Z(D). So it is clear that Cy(7t,,) contains D. Let « be a root
of E, and U, the corresponding 7-root subgroup. If at= o then one checks
from the known action of the graph automorphism 7 that U, < Cy(1t,,) if and
only if t,, centralizes U,. A direct check of roots shows that such root subgroups
U, span D. Now suppose that at+# a. One checks from the Chevalley
commutator relations that in each case (U,, U,.)=U, X U,,, and hence
Cy(tt,,) N Uy, Us,) is 1-dimensional. There are 24 pairs of roots interchanged
by 7, and hence

dim L(Cy(tt,,)) = 24 + dim L(D) = 36.

On the other hand, the same arguments at the level of the Lie algebra show that
dim(L(Y) N C(wt,,)) = 36. Thus Cy(7t,,) is a reductive group of dimension 36,
and D is a maximal commuting set of fundamental subgroups SL, (this is already
true in Y). It follows that Cy(tt,,) = C,, as claimed.

Now let Y=A,,_,, so ¥ =SL,,. Here it will be convenient to replace 7 by
©' = hd, where 6 is the inverse-transpose map and 4 is the n X n matrix (8, ,,4,-,)
(that is, the matrix with entries 1 on the opposite diagonal and entries 0
elsewhere). Then 7' € Y. Now 7’ normalizes the lower triangular group and also
the diagonal group T. An easy computation shows that any element of 7'T is
T-conjugate to an element of the form 7't, where ¢ = diag(1, ..., 1, ¢,41, ---, Can)
for some ¢; € F,. If we also assume that 7't corresponds to an involution in Y{t),
then (t't)>€ Z(Y). It then follows that t=diag(l,...,1,c,..., c) with ¢ = +1.
Then Cy(t't) is D, or C, according as ¢ is 1 or —1.

Lemma 2.8. There are local subgroups U;(2)x Gy(2) in *E«2), and
L,(3) X Fy(3) in E4(3). These subgroups are unique up to G,-conjugacy.

Proof. First consider L = E,(3). The adjoint algebraic group G contains three
conjugacy classes of involutions, with centralizers A,Ds, A,{w,) and T,E¢(w,)
(see [17]). Let a be an involution in G, with Cg(a) = T E¢(w>). Here w, induces
a graph automorphism on the Eq. By Proposition 2.7, we may pick an involution
b € Cg,(a) such that Cs(a, b)’ = F,. Write F = Cg(a, b)°. Then T; < C4(F). Since
Cg(b) contains F, b must be conjugate to a, so Co(b) = T{E¢(w3). Then F < E|,
and so Cg(F) contains (T;, T;). We claim that Cg;(F) is reductive. For
otherwise, FCg(F) lies in a parabolic subgroup P of G. Since P contains F = F,,
P must be an Eq-parabolic with F fixing a 1-space of the unipotent radical. But F
also fixes a 1-space of the unipotent radical of the opposite parabolic, contradict-
ing the fact that C(F)° < P. This proves the claim. Also C4(F)° N Cx(a) =T, so
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Cs(F)° has rank at most 1, and so Co(F)°=A,. Thus we have constructed a
subgroup A, X F, in G = E;. The subgroup A, here is of adjoint type, as A; X F,
does not centralize any involution. Taking fixed points under o then, we have a
subgroup L(3) X F,(3) of E(3). This subgroup is N,({a, b)). Since the above
proof shows that (a, b) is unique up to G,-conjugacy, the result is proved for this
case.

The argument for L =2E4(2) is similar. Here we take an element a € L of order
3 with Cg(a) = T,D,(ws). Choosing b = wy, we find that Cs(a, b)°=G,, and a, b
are conjugate. Further, if T; is the centre of C4;(b)°, then C4;(G,) contains
(T, T3), and we calculate as above that C4(G,)°=A,. Thus we obtain a
subgroup A, X G, in E, and, taking fixed points, a subgroup Us(2) X G,(2) in
2FE¢(2). Uniqueness follows as before.

For the remainder of the proof we assume that N,(E) is not one of the
subgroups given in Lemma 2.8.

Lemma 2.9. (i) Suppose that Z(G) has order r. Then E (the preimage of E
in G) is either elementary abelian or extraspecial.
(ii) For e € E¥*, Cs(e)° is semisimple.

Proof. Now E is the commuting product of an abelian group and an
extraspecial group, and M normalizes Z(E). Thus our hypothesis on M, together
with Lemma 2.4(i), implies Part (i).

For (ii), assume that ee E¥ is such that Cg(e)’ is not semisimple. Then
Cs(e)’=TD, a commuting product of a non-trivial torus 7 and a semisimple
group D. By Lemma 2.6, there are precisely two possibilities: TD = T,D, with
(G, r)=(Es, 3), and TD = T,E¢ with (G, r)=(E;, 2). By Lemma 2.5(ii), we
have E s Cg(e)’, and so Part (i) implies that £ is extraspecial. Thus for each
f € E* there is an element 7 € Z(G)* such that f is E-conjugate to f2. Since the
order of the multiplier of D is not divisible by r, it follows that END =1, and
hence |E|=r% Write E = (e, f). Define Y=Cg(E)° and K = C5(Y)°. Then Y
and K are both semisimple by Lemma 2.3, and we have Y < D, T < K. Moreover
Y #1, since f induces an element in the coset of a graph automorphism of D.
Thus K <G.

Suppose first that [K, E]=1. Then K< Cg(E)’ =Y and so K < Z(Y), which is
absurd as K and Y are semisimple.

Thus [K, E]# 1, so by Lemma 2.1, L is E,(3) or E§(2) and K, has factors L,(3)
or Us(2), respectively. Since £ is extraspecial, the multiplier of L has order
divisible by r, so when g =2 we have L =2E(2). Consider L =E(3). Now
C;(e) = T,E¢(w,) and f induces an element in the coset of a graph automorphism
of D=E,. Hence by Proposition 2.7, Y=Cg(E)" is C, or F,. Moreover,
KN Cgle)=T,, so as K, has a factor L,(3), we must have K=A, and
K. = L,(3). Thus E =(Z,)’<K,. If Y=C, then E is not fused in G (see the
proof of Lemma 2.15 below, third paragraph), which is absurd. Thus Y = F, and
N, (E) = L,(3) X F,(3). This is conjugate to the subgroup of Lemma 2.8, which we
have excluded by assumption. An entirely similar argument for L = *E4(2) (using
here [16, 9.1] for the classes of graph automorphisms of D of order 3), shows that
N, (E) is the subgroup of Lemma 2.8 in this case also.
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In the remaining lemmas we deal separately with the various possibilities for G
and r.

Lemma 2.10. (i) If G = G, then r =2 and Ng(E) = 2°.SLy(2).

(ii) Let G be F, or Eg with r =3 or 5, respectively. Then Ng(E) = r*.SL;(r).

In both cases (i) and (ii), L and Ng (E) are as in Table 1, and E is determined
uniquely up to G,-conjugacy.

Proof. Fix e € E*. First assume that G = G, and r =3. Then E < Cg(e) =SL;
by Lemma 2.6, so E lies in a maximal torus of G, contrary to hypothesis. Thus r
is 2, 3 or 5 according as G is G,, F, or Eg (by the hypothesis of the lemma). From
Lemma 2.6 we see that Cg(e) = X, X,, a commuting product with X, =X, of
type A, A, or A,, respectively. Moreover Z(X,X,) = (e).

Let x € X;\(e) for some i, with x of order r (this is not possible if G = G, as
then X; =SL,). If G = F, then x is contained in a fundamental subgroup SL,, and
if G = E then x lies in a product of two commuting fundamental subgroups SL..
Consequently Cq(x) contains C;, Dy in the F,, Ej cases, respectively, and we
deduce that x is not G-conjugate to e. Hence in any case, we may by Lemma
2.4(i) choose e’ € E\(e) with e’ =a,a, and a;, € X;\(e) for i=1, 2. Note that a,
has distinct eigenvalues on the natural module for X,: for otherwise C(e, ') has a
central torus, whence C(E) has a normal torus, contrary to Lemma 2.5.

By Lemma 2.4(jii) there exists e” € E\(e, e’ ), and by Lemma 2.4(i) we may take
e"=b,b, with b; € X;\(e). We have [a,, b;] # 1. A straightforward calculation in
X, X, shows that (e, e’, e") is self-centralizing in Cg(e), so

E=Cs(E)={e, €', e").

Now the group F = (a,, a,, b;, b,) is extraspecial of order r° and normalizes E,
inducing a group of automorphisms of E of order r* and centralizing E/(e) (this
is a group of transvections in SL;(7)). Considering the above configuration, we
see that beginning with the group Cg(e’) = Cg(e) yields a group normalizing E
and inducing a group of order r* centralizing E/{e’'). We conclude that

Ng(E)/E = SLs(r).

Since Ci(e) N Cg(e’) = T(e") with T a maximal torus of X,X,, it follows that no
element of Ng(E) can centralize a hyperplane of E without centralizing E.
Therefore Ng(E)/E = SLs(r). This proves (i) and (ii). To complete the proof of
the lemma, we must analyse the situation in the finite group L = G,,.

In the case where L =2G,(q)' we have N,(E)/E =Z, (see [31]), and g =3 by
the maximality of M, as in Table 1. And if L =2F,(q)’ then the 3-rank of L is
only 2 (see [16,10.2]), so E £ L, a contradiction.

Now let L be G,(q) or Fy(q), or Eg(q) with 5 | p— 1. The subgroup E lies in
the o-stable group Y =X, X,, and O”(Y,) =8L;(q)°SLJ(g). Write Z = (e), so
that. Y=Cs(Z). If E<OP(Y,) then the above argument shows that E is
conjugate to a subgroup E, in SLi(p)°SL:(p), where r |p— ¢, and Ng(E)) lies in
Gy(p), E(p) or E(p) in the respective cases. Hence g = p by the maximality of
M, and E is determined up to L-conjugacy here. Also when L = F,(2) we have
N(E)<L43)<L (see [11, p. 170] or [25]), so this case is excluded from Table 1.
Now suppose that E < 0°'(Y,). We may take it that a1a,€ O°(Y,), b.b,¢
0” (Y,). Now M induces an irreducible subgroup of SL,(r) on E containing a
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transvection (one exists in Ny (E)). Hence M induces SL;(r) on E (see [24]).
Consequently Ny(Z) is transitive on (E/Z)*. But this is impossible as a,a, €
0”'(C(Z),) and b,b, ¢ 07 (C(Z),),

Finally, let G = Eg4 with 54 p>— 1. If L = E4(p) then C,(e) must be SUs(p?)
(see [13, p.215]); but then E lies in a maximal torus of C,(e), which is not so.
Hence g >p. As above we see that E<0”(Y,). Then E is conjugate to a
subgroup E; in SUs(p*)°SUs(p?), and Ng(E,)< Ey(p®). Consequently g = p>
here. All parts of the lemma are now proved, apart from the non-maximality of
N (E) when p=2 and G = Eg. As stated in § 1, this is due to the embedding
N (E) < L4(5) < Eg(4), which is demonstrated in § 5.

Lemma 2.11. Suppose that G = E¢ with v = 3. Then E =(Z,)?, C,(E) is special
of order 3° with derived group E, and N;(E)/C;(E) =SLs(3). Moreover, L and
Ng,(E) are as in Table 1, and E is determined uniquely up to G,-conjugacy.

Proof. Fix e € E*. By Lemmas 2.6 and 2.9(ii), we have
C:= C(;(e) = (X]X2X3)<W3>,

where each X;=SL;, Z(X;)=(e) and (w;) is transitive on {X;, X,, X3}.
Moreover, E*=e“NE. Set D=X X,X;. For i=1,2,3 let Z(X})=(¢).
Notation may be chosen so that é,é,é;=1, Z(G) = (¢,6;') and e =¢,Z(G) for
i=1,2,3. Hence e, =e, =e;=e.

We next claim that if f is an element of order 3 in X,X;\(e) for some i #, then
f is not conjugate to e. For let J be a fundamental subgroup SL, within the third
SL;. Viewing f as an element of C;(J) =As, we compute that C, (f) contains
SL, or (SL,)?, and hence that C(f) contains SL, or (SL,)*, which proves the
claim. Therefore, if f € (E N D)\(e) then f has the form a,a,a; with a; € X;\(e)
fori=1,2,3.

We now show that £=<D. For suppose that there exists f € E\D. It is easy to
check that C\{e) contains precisely one conjugacy class of subgroups of order 3
lying outside D\(e). Consequently C contains a unique class of elementary
abelian subgroups of order 9 which contain e and are not contained in D, and
(e, f) is a representative of this class. For i =1, 2, 3 let g, be an element of order
3 in X,\(e) and let a =a,a,a;. Then (C;(e) N Cy(a))’= T, a maximal torus.
The possibilities for Cg;(a)’ can be read off from [16, 14.1]. Viewing e as an
element of Cg;(a) we see that the fact that (Cg(e) N Cg(a))’=T, forces
Ci(a)’ = (A,)? and hence a is conjugate to e. For i =1, 2 choose b; of order 3 in
X \(e) such that [a;, b;] =e, and set b = b,b; . Then (a, b) is elementary abelian
of order 9, but (4, b) is not abelian. It follows that b ¢ Ci;(a)’, and hence by the
above, (a, b) is conjugate to (e, f). But this is impossible since (e, f)* is fused,
while {a, b)* is not. This contradiction shows that E < D.

Let f = aja,a; € E\(e). As Cg(e, f)’=T,, Lemma 2.3 implies that E > (e, f ),
so we may pick g =b,b,b;€ E\(e, f). By the second paragraph, b, ¢ (a;, e) for
i=1,2,3. Replacing g by g? if necessary, we may assume that [a;, b;] =e for
i=1,2, 3 (since [a;, b;] =1 implies that b, € (a;, e)). It follows that E = (e, f, g).

Let K = (ay, as, as, by, by, bs), an extraspecial group of order 3’ normalizing
E. We have

CK(E)=<E7 ala%)blb%>r CK(E)’=<e>=[K’ E]y
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and Co(E) = Cx(E)(t) where (t) is transitive on {X;, X2, X3}. ReplachgEe l;y
other elements of E¥ in the above arguments, we see that NG(E)/Cs(E) =
SL\%’?now consider the finite group L. Here L = E§(g) with £ = +1. Now £ lies
in the o-stable subgroup D = X, X,X;. First suppose that‘ 3|p — & Wesee, as in
the proof of Lemma 2.10, that E < 0”'(D,), so E is conjugate to a subgroup £,
in SL§(p)°SLi(p)°SL5(p), which lies in Eg(g). Moreqver the above argpment
gives Ng(E)<E{(p) and hence g =p and E is determined up tg Ga-c_osnjugacy
here. Finally, let 3|p + ¢. Then E lies in a subgroup ]'V'(SL%(p ): SL;(p)) of
Ei(p) (see [14, p. 50]), and we find that E is sclf—centrahzmg in E¢(p). Then by
Lemma 2.10 the normalizer of E in E{(p) lies in a subgroup F(p). Agam the
G,-class of E is determined, so Ny (E) is non-maximal here, a contradictlon: To
conclude, note that L #*E¢(2) here also, since in this case N (E) lies in a
subgroup Q4(3) of L (see [11, p. 191]). Thus L and Ng_(E) are as in Table 1, and
the proof is complete.

Lemma 2.12. If r =3 then G is not E, or E;.

Proof. First suppose that G = E;. Let e e E¥. By Lemma 2.6, Cg(e) = A,As.
Write C;(e)/(e) = A,As correspondingly, and let E, be the projection of E in
As. If the preimage of E, in As is abelian then E is contained in a maximal torus,
which is not so. Otherwise, by 2.5, the preimage is extraspecial and C;(E)" is a
subgroup A, of As. The centralizer of this A, in G contains A,A, (within Ce(e)),
and is normalized by M =Ny(E). As M is maximal, it therefore contains
Cs(A)), N L. But this group does not normalize E.

Thus we assume that G=FE; Then E<K,R, a commuting product with
K,=SL; and R=E,. Let (e,) = Z(K\R). Now R=K,K K,=(A,)’, and we
write (¢;) =Z(K,) fori=1,2,3,4. Let K = K K> K;K,. One checks that N;(K)
induces S, on {K,, ..., K;} and GL,(3) on Z(K)= (e1, €2). We may choose
notation so that the relations on (e}, e, e3, €4) are spanned by e,e,e;'=
€,6:05= 1.

Suppose that ge E* with B= Co(g) of type Az Let fe E\N(g). Now
Cy(f)" contains a normal torus, so Lemma 2.5 implies that there exists 4 e
EN(Ca(f)\Cp(f)’). It follows that Cs(f)° = (A,)°. Hence O5(Z(C(E)))
contains conjugates of e;, and by Lemma 2.4(i) we may (and do) replace E by
(ef N O)(Z(C(E)))). Hence we may assume that e, € E.

Thus E<Cg(E)= Csle)=K,R, and without loss of generality, we may
assume that E<K(r), where (t) centralizes K, and permutes {K,, K, K.}
transitivelyl By Lemma 2.3, E does not centralize K 1- Hence there is an elément
f—ja(xeef’ﬂE with a, € K \(e,), x € K2K3K.(¢). By Lemma 2.3 also, there
exists g =b,y € E with [a,, b)]=¢,, b, e Ky and y € K,K;K,(t).

Let {)e K; with |b| =9 and b3 ¢ Z(K;). Then a direct check shows that b is not
K -conjugate to bef'. In particular, the relation [a,, bi]=e, implies that the
group (ay, b,) has exponent 3.

fNow R is the simply connected group £,
Of non-central elements of order 3, of types (A 3 T,D i
actipn of W=S804(3) on (T), where ]Xpls zal(m:;))(imzzzlly4 sr;l)rlli(ti tzlrﬁ; (rsl:;c:hf—zz
orbits on l-spgces). Thus Cg(x) is of one of these types. If Cr(x) =,(A )? then
f=ax is conjugate by an element of R to a\e5, where £ = +1. Now NzG(K) is

which has three classes of centralizers
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3-transitive on {Kj, ..., K,}, so K,K,K; is contained in a subgroup Az, and
working within this Ag we see clearly that C;(a;e5) contains a subgroup (As)?;
consequently, by Lemma 2.6, C;(f) must be A;, contradicting the fact that f is
conjugate to e;. Thus Cg(x) is not (A,)> If Cg(x) is TyAs then x{e;)/{e;) is
contained in a fundamental SL, of R/(e,), so its centralizer in R/{e;) is
connected and Cg(e,, f) contains a central torus, contrary to Lemma 2.5. Hence
Cr(x) must be T,D,.

Now at least one of the elements f, g, fg and fg~' lies in K. Let h be such an
element, with h = k,k,ksk, and k;€ K;. If ENK = (e, h) then E = (e, h, e’),
where either ¢’ =1 or e’ € E\K. In either case C(E) contains a normal torus,
contrary to Lemma 2.5. Therefore (e,, ) < EN K and so we may rechoose h if
necessary so that |k;| =3 for some i > 1. Previous remarks (in the fifth paragraph
of this proof) imply that |k,| =3, and so from the relations on the elements ¢; we
conclude that |k;|<3 for each j. Set r = k,k;k,. We may write h =k k;k;, as
otherwise Cg(r) =(A,)?, contradicting the previous paragraph. As E < C(h) we
conclude that E < K. We may thus take x = a,a; with g; € K; and q; of order 3. If
K,<C(E) then (C4(E)°)' = K,, contradicting Lemma 2.3. Hence there exists
d eeP N E such that d =d'd,, where d’ € K,K,K; and d, e K,. Then d =dd;d,
where i #j, i, je{1,2,3} and d;€K,, d;eK;. If [a;, d;]# 1 or [a;, d;]# 1 then
[f, d] # 1 since (e;, ¢;) =(Z,)*. Thus d; € (a;, &;)\(¢;) and d; € {a;, €;)\(¢;).

Since [x,y]=e;!, we have y=b,bsb, with b,eK; and [b,, a,] € {e:)?,
[bs, as] € {e;)®. But then [g, d]# 1 unless [by, d,] € {e,)*. Now earlier remarks
imply that |,/ =3 for all i. We have g =b,b,bsb, with each b; of order 3 in
K \(e;). But then Cgr(b,b3b,) = (A,)’, whereas we have seen that this centralizer
should be T,D,.

This completes the proof of the lemma.

LemMa 2.13. If r =2 then G is not F, or E;.

Proof. Suppose that the lemma is false. First let G = E¢. Let z and e be
representatives of the two classes of involutions in G, with Cg(z) = T,Ds and
Cs(e)=A,As. By Lemma 2.6 we have E* =¢“ N E, and, in particular, we may
assume that e € E. Write Cs(e) = XD with X =A,, D = As. If d is an involution
in (DNE)\(e), then Cp(d)=A,XA;, and setting c=d or de, we have
c € Z(As). Now consideration of Cg(c) yields ¢ € z%, a contradiction.

Thus EN D = (e), and it follows that E has rank at most 3. Consequently, by
Lemma 2.4, E has rank 3. Write E= (e, f,g). Then Cgle,/)NX =T, a
1-dimensional torus inverted by g. As E projects to a quaternion subgroup of D
acting homogeneously on the usual 6-dimensional module, (Cg(E)°)' = K =A,.
Lemma 2.3 implies that C5(K)" is semisimple, and as E does not centralize T;, it
cannot centralize C;(K)°. Hence by Lemma 2.1, g =3 and (C5(K)"), has factors
L,(3). But E has rank 3, so this contradicts Lemma 2.1(i1).

Now suppose G =F,. Again G has two classes of involutions, with repre-
sentatives e and z such that Cs(e) =A,C; and Cs(z) = By. If E¥ =e“ N E then
we obtain a contradiction as above—the only change is that here X is A, rather
than A,.

So assume that ze E=(z° NE). Let y e (z° N E)\(z). Then Cs(y, z) is D,
or AAB,. In the latter case Z(Cgs(y,z))=Z(A; X A,) contains only
one conjugate of z, a contradiction. Thus C(y, z) = D, and y has eight eigenvalues
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—1 on the usual 9-dimensional module for B,. The product of two commuting
involutions of this type cannot again be of this type, so it follows that E has rank
at most 2. This contradicts Lemma 2.4.

It remains to deal with the cases where r =2 and G is E; or Eg. These require
considerably more work than the previous cases.

LemMma 2.14. Suppose that p is odd, G =Eg, and that J, ... Jg is a maximal
commuting product of fundamental subgroups SL, in G. Let Z(J)=e;) for
1<i<8. Then with suitable ordering,

(1) e;...es=1,
(i) {ey, ..., es) =((ey) X... X (eg))/R, where

R = (e 2363, 1648565, €284€6€5, eseseqes),

(iii) (ey, ..., eg) = (1) X (&3) X {e7) X (e3).

Proof. Choose a subsystem (A;)® in the Eg root system. The elements e; are
the elements h,(—1) as described in [9, Chapter 6] for the roots « in the
subsystem. A direct check using these elements gives the assertions.

LemMa 2.15. Let r=2 and G = E,. Then E =(Z,)*>, Cc(E)=E X D4 (D4 of
adjoint type), and Ng(E)/Cs(E) = S;. Moreover, L and Ng_ (E) are as in Table 1,
and E is determined up to G,-conjugacy.

Proof. First note that G has precisely three classes of involutions, with
centralizers A;Dg, A;{w;) and T,E¢(w,). Of these, the first lifts to a class of
involutions in E,, while the other two lift to elements of order 4.

Let (z)=Z(G). By Lemma 2.9(i), £ is either extraspecial or elementary
abelian. Suppose that E is extraspecial. Then ¢ is conjugate to éz for every é € E,
and hence Cg(e)’ < Cs(e) for each e € E¥. Hence Lemmas 2.6 and 2.9(ii) imply
that each element of E* has centralizer A,(w,). Consequently, every element of
E\(z) has order 4, and so E= Qg and E = (¢, f) with [¢, f] = z.

Let y be an involution of G with centralizer T,E4(w,) and let d be an
involution in Cg(y)\Cs(y)°. (To see that d exists, let T be a maximal torus of
T,Es and let T<J;...J;, a maximal commuting product of fundamental
subgroups SL,. Let s; be a fundamental reflection in J; and set d =s, ... s;. Then
o = —a for each root o and so d induces a graph automorphism on the factor
E¢. Finally, d is an involution.) Write C=(Cs(y)’)' =E,. The proof of
Proposition 2.7 shows that there is an involution 4 in a fundamental subgroup SL,
of K=CNCg(d) such that d, dh are representatives of the two classes of
involutions in Cd. Suppose that d, dh € y°. Then

CG(d: dh)o = (Cc(d)o n CG(h))O =TAA;.

Hence d® = dh implies that g normalizes T;. Then g normalizes Co(T}) = C(y)".
Yut d, dh are not conjugate in Ng(Cs(y)°) = Cg(y), a contradiction. Thus d, dh
"e not both conjugates of y. Now d € C(y)\C(y)°, so [d, §]#1 and therefore

5(d)° < Cg(d). Similarly Cg(dh)’ < Cg(dh). It follows that at least one of d, dh
conjugate to an element of E*. Consequently, we may choose e € E* such that
y commute but é, § do not commute.
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We now have the two non-conjugate involutions f, y € C(e)\C(e)°. Moreover,
since e € C(y)\C(y)°, Proposition 2.7 implies that (C(e) N C(y)°)’ is of type F, or
C,; as this subgroup lies in C(e)’ = A, it must be of type C,. Hence, also by
Proposition 2.7, C(e)°NC(f)’=D,, that is, Co(E)"=D, (of adjoint type).
Further, E¥* =e® N E and f, fe are conjugate in Cg(e) = A,(w,) (regarding the
action of f as the ‘inverse-transpose’ action, f and fe are conjugate by a suitable
diagonal element of A;). Repeating this for each element of E*, we see that
Ng(E)/Cg(E) =S;. We claim that the group S5 here acts as graph automorphisms
on the factor D = C;(E)"= D,. For suppose to the contrary that there is a
3-element x centralizing D. Now D has two composition factors on the minimal
56-dimensional module for G, each of dimension 28 (each is the skew-square of a
natural 8-dimensional module). It follows that x has precisely two distinct
eigenvalues on the module, and Cg(x) acts on the corresponding eigenspaces,
each of which has dimension 28. But D is irreducible on each eigenspace, so by
[16, 14.1] the only possibility for Cs(x)" is A,. This is absurd as A, centralizes
only 2-elements. Hence our claim is proved.

To conclude this case (assuming E extraspecial), we consider the situation in
the finite group G,. We have proved that the G-class of E is uniquely
determined, and Ng(E) = (E X D,).Ss. Applying [26, I, 2.7 and 2.8], we see that
the G,-classes of subgroups (E,), for o-stable E, € E¢ are in bijective correspon-
dence with the classes of elements in the coset S,0 =(E.S;)0. The only such
classes giving Klein 4-groups (E,), are represented by o and eo, where e € E*. In
the latter case, however, the corresponding Klein 4-group does not have an
element of order 3 acting on it. Hence the G,-class of E is uniquely determined,
and Ng (E) = (E X Inndiag(D,(q)).S;, as in Table 1.

We may now assume that E is elementary abelian. Thus each involution in E#
has centralizer of type A,D;. We view G as a subgroup of Ej, centralizing a
fundamental subgroup SL,, say J; (in the notation of Lemma 2.14). We may then
use the relations in Lemma 2.14, setting (z) = (ey) = Z(G), and é=e¢,. Let
Cs(8) =J,Y, a commuting product of J;=A, and Y = D,. Note that ¢, and ¢,z
are not conjugate in G, since otherwise Ci(e) would not be connected, a
contradiction.

Suppose that there exists f € (E N Y)\(é, z). Choose a maximal torus T of J; Y
containing & and f. Then J, is contained in J; T < Cg(f) =J§Y?® for some g € G.
Since J; is T-invariant, it follows that J,<Y*® and so [J,,J{]=1 Hence
feJ8<C(J,) =Y. Thus f lies in a fundamental SL, of Y, so

E<Coe,f)=Cee. )" =1L1R,

where J;, J,, J5 are conjugate fundamental subgroups SL,, and R = D,. Letting
(e;)=Z(J;), we have Z(J,/,3R) = (e;) X (ez) X (e5) and Z(J\),J;)NZ(R) =
(eie,, e5¢5). By Lemma 2.3, C,(E)’=1 for i=1,2,3, so there exist elements
a,a,r,, bibar,, ajasrs, bybsr, € E such that a; and b; (also a} and b)) are elements
of order 4 in J; with [a;, b;] = e; (also [ay, b3] =), and 1y, r,, 15, ;€ R. But then
either [a,, a3] # 1 or [a,, bj] # 1, say the latter. This forces [a,a,r, bybsri] #1, a
contradiction. Thus there is no such element f. R

By Lemmas 2.3 and 2.5, there exist x;=a,y,, x,=b,y, € E with a,, b, €J,,
v, y2€Y and a3 =b3=yi=y3=[a,, b)]=[y, y.] =e€,. The previous paragraph
implies that

E={e, z, xi,x,).
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Now Y/(z) is a half-spin group: to see this, regard Y/(z) as a Levi factor of G;
the corresponding unipotent radical is a 32-dimensional spin module for a
half-spin group of type D,. Since z is conjugate to e, in Ng(Y), ¥/ (e,) is also a
half-spin group, and hence Y/(ze,) =SO,,. Moreover, y{ze,) and y.(ze,) are
elements of order 4 squaring to the central involution. Consequently

Cé(ér Z, xl)o = ’TZAS

Further, x, = b, y, inverts T, and acts as a graph automorphism on As. Thus by
Proposition 2.7, K =Cg(E) is of type C; or Ds. Also T,=<C(K)". Since x,
inverts T,, E does not centralize C(K)", so by Lemma 2.1, ¢ =3 and (C(K)"),
has factors L,(3). But the rank of E is 3, which contradicts Lemma 2.1(ii).

For the final lemma, handling the case where G = Eg and r = 2, we require the
following elementary proposition.

PropOSITION 2.16. Let D be an elementary abelian group of order 2°=4, and
let V be a module for D over a field of odd characteristic. Then

V=C/,(D)D Z CW(Dy),

where the sum is over the subgroups D, of index 2 in D, and C(D,) is the unique
N-invariant complement to Cy, (D) in Cy(Dy). In particular, if f = dim C,, (D) then

dim V + 2= 2)f = >, dim C,, (D).
Proof. This follows from [15, 3.3.3].

LemMa 2.17. Suppose that G =Eg and r=2. Then E =(Z,)’, C;(E)/E =
(Z,)", Co(E)' =E and Ng(E)/Co(E)=SL(2). Moreover, L=E(p) and
NL(E)=Ng(E) as in Table 1, and E is uniquely determined up to L-conjugacy.

Proof. Let e, z be involutions in G with C4(z) =D = D, and Ci(e)=1JY,
where J, is a fundamental subgroup SL, and Y is simply connected of type E;.
Note that D is a half-spin group (see [17]).

Let F=J,...Js be as in Lemma 2.14, with (e;) = Z(J,) for 1 <i<8. Take
F<D, so that z € Z(F). The group Ng(F)/F induces 2°.SL,(2) on F (see [2]),
and Z(F)= (e, e;, e;, e) has two Ng(F)-classes of involutions: e® N Z(F) =
{e:/|1<i<8}, and z°NZ(F) = {ei¢; | i #]}. Take e = ¢, and z =e,ey.

Throughout, a; and b; denote elements of order 4 in J; satisfying a?= b2 =
[a;, b:] = e;. We divide the proof into steps. I

Step 1. Involutions in D. We make some observations concerning involutions
in D. If x is an involution in D such that Cp(x)=S,S, with S, and S, of type D,
then Z(Cq(z, x)) = (2, x) and z, x, xz are all conjugate. We may take J,J,J;J, <
i and J,JsJeJ; < S,. Then Z(S)) = Z(S,) = (e, e, eze3) = (eqe, eqes). -

. Next, D contains two classes of subgroups A,. In one class the groups A, are
1isomorphic to SLg, with central involution z. The groups A, in the other class
have centre of order 4 and do not contain z; the central involutions in these latté}

gr((;ups4 A, are conjugates of e. Note that a subgroup A, of E, has centre of
order 4.
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Step 2. Involutions in F. Let A= {{i, ], k, I} | e;e;e,e,=1}. The 4-sets in A are
determined by Lemma 2.14(ii). We have |A| =14 and Ng(F)/F = AGL4(2) is
transitive on A. Each 4-set in A corresponds to a product of two groups SO, in an
N(F)-conjugate of D. For an involution ¢ € D corresponding to an element of
SO, with a eigenvalues —1 and b eigenvalues +1 (with a + b = 16), we say that ¢
is of type (—1)*(1)°. Thus

e =e, is of type (—1)*(1)'?,
e eg =z is of type (—1)*(1).

The involutions in F\Z(F) are a, ... ag and a,a;a,a,e}, where {i, j, k, [} € A and
re{i,j, k [}, s=0or 1. Calculation in D gives:

a, ... ag is of type (—1)%(1)%, conjugate to e, ey,
a;a;a,a, is of type (—1)*(1)"?, conjugate to ey,
aajazae, (r ¢ {i, ], k, [}) is of type (—1)%(1)®, conjugate to e, e;.

Note also that Cp(a; ... ag)’ = Cp(aa,acae,)’ = D,D,.

The remainder of the proof falls into two sections: in Part A we show that
E*=z9NE, thatis, E is a z-group; and in Part B we show that the z-group E is
the group (Z,)° in the conclusion of the lemma.

ParT A. E is a z-group.

Suppose that this is false, and take ee E. Write E,=ENY (recall that
Cs(e) =J,Y with Y = E).

Step 3. There exists f € E,\\(e). By Lemmas 2.3 and 2.5, there exist a,y,
b,y"e Esuch thata,, b;€J;, y, y' €Y and

ai=bi=y'=(y)=[a, bi]=[y y]=e
Suppose that E,={e). Then E = (e, a,y, byy’). Now Cg(a,y)NJ, =T, and b,
inverts 7,. Moreover, C(e,a,y)" is T;A; or T, T{Es (see Lemma 2.15 for the
involution classes in Y), and y’ acts as a graph automorphism on (C(e, a, y)°)".
Thus by Proposition 2.7, (C(E)’)' =K is of type F,, D, or C,. Clearly K
centralizes 7, so T, < C(K)". Moreover E N C(K)" contains e, so E<C(K)".

Since b,y inverts T, E does not centralize C(K)". Hence Lemma 2.1(ii) applies
to give a contradiction.

Step 4. The subgroup Cs(e, f). In this step we calculate Cs(e, f) (where fis as
given by Step 3). As Y is simply connected, Cy(f) is A; D, A, or T, E4. The last
possibility does not hold, by Lemma 2.5(i); and in the second case Cy(f)=
S14/Z,, forcing f =e, which is false. Hence Cg(e, f)=J,Cy(f)=A,A,D,. We
may take

Cqle, f)=JJsR

where R = Dg. Then (e, f) = Z(Cgs(e, f)) = (ey, es), and z € E. Also J;}JsNR =
(ey, eg).
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Step 5. We have EN R = (e, eg). Suppose that the claim is false, and pick
g€ (ENR)\(e,, e5). Then Cr(g)=A4,A,D,. We may take g=e,, Cr(g)=
L15S,, so that Cgley, es, 8) = J1JoJ3J3S, (recall that S, = D,).

First assume that there also exists & € E N (S)\Z(S,)). We may take Cs,(h) =
JJsJeJ;, so that E<F and Z = Z(F)<E. For 1<i=<38 choose a;, b, € J; of order
4 with [a;, b;]=e;. For a 4-set A= {a, B, v, 6} €A, write

A, = a,a5a,d5, bs=Db.bgb,bs.
Define the subgroups U, Y, (A € A) of F as follows:

U=(Z,ag, b,...bg| all BEA),

Ya=(Z, a4, bs, a3 ba),

where A denotes the complement of A in {1,...,8}. Thus U=(Z,)’ and
Y, =(Z,)®. Moreover, if Uy=(Z, ag| B €A}, the coset Upyb, ... by in U consists
entirely of conjugates of z.

We claim now that for some A €A and choice of a;, b;,, the group E is
contained in either U or Y. To see this, note that if E contains az and a. with B,
CeA and |[BN C|=2, then E can contain no element b, (as E is abelian), and
hence E < U. Otherwise, the set {az | ap € E} is contained in {a4, az} for some
A€ A, and then clearly £ <Y,, proving the claim.

If E<U then (¢° N E) < U,, and hence E < U, by Lemma 2.4; but clearly U,
lies in a maximal torus of F, so this contradicts our hypothesis on E. Hence
E<Y, for some A € A and choice of a;, b;. Now E centralizes no J; by Lemma
2.3, and hence we may assume that a,az =4, ... ag € E. Further, Cp(a, ... ay)’ =
T;. By Lemma 2.5, E centralizes no torus in T;, and hence E also contains
bsbi=b,... bg. Thus

(Z,ay...a3,b,...bg) <E<Y,.

If |E] =2° then (¢° NE) < Z <E, a contradiction. If |E| =27 then we may take
E=(Z,a4,0a3 b;...bg) and then b,...bg¢ (¢ NE), again a contradiction.
Thus |E|=2°and E = Y,. Write A ={i, j, k, I}. One checks now that {e.e;, e;e; )
is the unique largest z-pure subgroup of Y, whose involutions ¢ satisfy
rez®U(1} for all xe ENz® Consequently Ng(E) normalizes (ee;, e, ),
which lies in a torus, contrary to hypothesis.

Thus there is no such element h € E N (S;\Z(S,)).

We have E<JiLhJiS, and (e, e, e5) <E. Since EN(S\Z(S,)) =,
elements z' of (E Nz%)\(ey, e,, eg) have the form a,a,a3a3S OT a;a;s With s € S,:
for if xs € E with x € Z(J}J,J5J5) then s€ E, a contradiction. If z’ = a,a,a,4a,5s,
then z'(e,, ey, €5) is fused (that is, consists entirely of z-conjugates), and if
z' =a,a;s then z'(e;, ¢;) is fused.

Suppose that E contains a,a;s, with s,€S,, and let {i,j, k, 1}={1,2,3,8).
Then there exist s,, 53, 54 €S, such that

Es< (eu €, €3, 4;4;5,, bib/'SZ: a,a,ss, bkb154>-

It follows that the intersection of all maximal z-pure subgroups of E must contain
e, and hence must be a proper non-trivial subgroup of E normalized by M,

which is a contradiction. Consequently E contains no such element a;a;s;, and so
there exist 54,5, € S, such that

E<{ey, e,, €3, a,a,a3a5,, bibybsbgs,).
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Lemmas 2.3 and 2.5 force equality here, and Lemma 2.4(i) allows us to take
a,a,a3a35,, b1bybsbys, € z¢. But then (ENe®) <E, a contradiction.
Thus the element g does not exist, and so ENR = (e,, ey), completing Step 5.

From Step 5 it follows that

E < ey, ey, agn, byr,, arrs, byry),

where r,e R= D for 1 <i<4.

Step 6. We have agr, ¢ E. Suppose that ayr, € E. Recall that agr,e Y=E,,
where Cg(e;)=J,Y. Since Y is simply connected, we have Cy(ayr) = A, D, (see
Lemma 2.15 for the involution classes of Y), and Z(Dy) = (ayr,, ,). From Step 2
we see that agr; and agrye; are not conjugate in G, and hence we may assume that
agr; € z¢. Similarly we may take byrs, a,r; and b,r, to lie in z¢. We now compute
connected centralizers as follows. First, we have

Ciley, agr))’ =T, A;,
since agr, € z¢ and r, is an element of order 4 in the factor E, of Cs(eg). Next,
Caley, agry, )’ = T,J, As,
since C(e,, e3)’ =J,J4R and r, is an element of order 4 in R. Also,
Ciles, agny, ey, byr,)’ =J,C5 or J, D5,

since r, inverts r;, hence interchanges the two distinct 6-dimensional eigenspaces
of r, on the natural 12-dimensional R-module, and hence induces a graph
automorphism on the factor As in Cg(ey, agry, €,)": now use Proposition 2.7.
Next,

0_
Cgles, agry, ey, byrs, air;)’ = T,A,,
since r; lies in C5 or Ds. Finally,
0
Coles, agry, ey, bgrs, ayr;, biry)" = A,

since r, inverts rs.

Now recall that (e, ey, agr,) < E. Let T, = Z(Cg(es, asn)"). Since C;(E) has
no normal torus by Lemma 2.5, E contains an element inverting 7;. From the
above calculations we see that K= Cg(E)’#1 and T,< Cg(K)". Moreover
ese EN Cs(K)Y, so E < Cs(K)". Now E does not centralize Cg(K)", so Lemma
2.1(ii) applies. Thus the rank m(E) of E is even, so it is 4 or 6. If m(E) =6 then
K=Cg(E)'=A, and M normalizes K, =PGL,(3). But then M normalizes
O,(K,) =(Z,)?, which lies in a torus of G,.

Therefore m(E)=4. Now C(e,, ey, agn)’ = T1J,As, so if C=C(E)°N As then
C' is a group of rank at least 2, normalized by M. Then C;(C’) contains T, so
does not centralize E, and hence Lemma 2.1(ii) applies to Cg(C'). This is
impossible as C;(C") contains J,Jg.

Thus agr, ¢ E, and Step 6 is complete.

Similarly bgr,, a,r;, b,r, ¢ E. Consequently, by Lemma 2.5 we may assume that

E= <31» €s, a,agr, blbs"'>
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where r,r'eR=D,. The cosets aasr{e,, eg),. 'blbgr'<€1, e.g) and
a,agrb,bgr'(e,, es) are each fused in JiJ;. Hence it is not possible that
E={(e°NE)=(z°NE), contrary to Lemma 2.4. .

This completes Part A. Thus from now on we assume that E is a z-group, and

that z =e,ege E.
ParT B. E =(Z,)’ is as in the conclusion of the lemma.
We begin by producing the z-pure subgroups (Z,) of the conclusion.

Step 1. Let F=1J...Jg with each J; a fundamental subgroup SL,, and
Z(J}) = (e;), as above. Let Zo= (ee; | all i, j). Define
A = <Zo, a... dag, bl .ee b8>
Then:
(i) A is a z-group and A =(Z,)’; any z-pure subgroup (Z,)° of F containing
Z, is F-conjugate to A;
(ii) C5(A) is a special group of order 2%, with C;(A)' = A and Cs(A)/ A=
(Zz)m;

(i) X =Ng(A)/Cs(A) =SLs(2), and the action of X on C;(A)/A is that of
SLs(2) on the skew-square of a 5-dimensional module Vs(2);

(iv) A lies in no larger z-pure subgroup of G.

Proof. We have Z,=(Z,)’, so A=(Z,)’. Moreover 4 is z-pure by Step 2. It is
clear from Step 2 that any z-pure (Z,)° in F containing Z, is of the form
(Zy,a1...a4, b} ... by), and hence is conjugate in F to A. Thus (i) is proved.

We next calculate Cg(A). Since Co(Z))°=F, we have Ci;(A) < N, (F).
Moreover N(F)/FCs(F)=(Z,)’.SLy(2), and Cc(Zy)/F lies in the normal

subgroup (Z,)* acting regularly on {J,, ..., J;}. It follows from (i) using a Frattini
argument that

No(F) = F(N(A) N Ng(F)). (*)

Moreover, FN Ng(A) induces S; on the Klein group A/Z,. Thus there is a

subgroup (7, s, t) < Ng(A) 0 Ng(F) inducing the regular normal subgroup (Z,)*
on {J;, ..., J}. Now there exist i, J» k, I such that

[r,a,...a4] = (e€)", [r, b, ... bg] = (ere,),

where s, 5, € {0, 1. Replacing r by r(bib;)'(axa)*, we have r e Ci(A). Similarly
we may take 5, 1 € C5(A), and so we have the subgroup

(r,s,t) < Ci(A).

Recall the set A of 4-sets defined in Step 2, and that for R = {i,j,k, I} e A, we
set ar = a,a;a,a;. Direct calculation gives

CF(A) = <A’ €1, ag, bR ' Re A>7
and hence

Co(A)=(A, e, a, br,r,s,t| ReA).
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Thus |C5(A)/A|=2" and Cs(A)/A contains the elementary abelian subgroup
Cr(A)/A of order 27.

We now show that X =Ng(A)/Cs(A)=Ls(2). First note that for any
ae€A\Z,, there is a maximal torus 7, of F, and hence of G, such that
(Zo,a) <T,. Now Ng(T,)/T,=W(Eg)=2.07(2). The non-trivial central ele-
ment here is wy, the longest element of W(E;), and the corresponding element
n,, of Ng(T;) inverts every element of T,. Moreover, A induces {n,,) on T,.
Write Q = Q,(04(T,))=(Z,)®. Obviously (Z,, a) <Q, and Ng(T,) induces the
group Og (2) acting naturally on Q. Since (Z,, a) is z-pure, it is a totally singular
4-space in Q. Let Y be any 3-space in (Z,, a). Then there exists g € Ng(7,) such
that Z§=Y. Further, C5(Y)"=F& Also g normalizes (T, n,,) (=Cqs(Q)), a
group containing A, and hence A < F%. Also A% < F%, and so by the uniqueness

of the conjugacy class of A% in F# given by (i), there exists f € F¥ such that
A’ = A% Then

gf'eNg(A), Z§ '=Y.

As a was an arbitrary element of A\Z,, we deduce that X = Ng(A)/Cs(A) is
transitive on the set of 3-spaces in A. Moreover, the element a,a, lies in Ng(A)
and induces a transvection in X. Consequently X = L(2).

By () there is an element u € Ng(A) of order 3 which acts on {J}, ..., Jz} as a
product of two 3-cycles. Write V, = Cr(A)/A, Vo= Cs(A)/Cr(A). Elementary
calculation shows that dim Cy,(«) =3, dim Cy,(U) = 1, that [V}, u] is a direct sum
of two 2-spaces, and that dim [V,, u] = 2. Now the non-trivial irreducible modules
in characteristic 2 for X = Ls(2) of dimension 10 or less are the natural module W
of dimension 5, its dual W*, and the skew-squares A’W, A*W*. Since
dim[W, u] = dim[W*, u] =2, it follows from the above information that C5(A)/A
must be the irreducible X-module A’W or A*W* (and in particular that
Cs(A)/A=(Z,)"). It is now immediate that C;(A) is a special group of order
25, and so Parts (ii) and (iii) are proved.

It remains to prove (iv). Now X = Ls(2) has precisely two orbits on the
non-zero vectors of A*W or A*W* (see [20,2.5]). In C5(A)/A these orbits are
represented by e;A and ag br,A, where R;, R,e A with |[R; N R,|=2. Since
e; € e and ag, by, is an element of order 4 in C;(A), (iv) follows. This completes
Step 7.

Recall now that z =e,eg€ E. Pick z, € E\(z).

Step 8. We have (Cg(z, 2,))° = 8,8, = D,D,, and Z(S,)=Z(S,) ={z, z;). To
see this, note that any z-pure Klein 4-subgroup V of G can be embedded in a
maximal torus T of G, and Ng(T') induces Og (2) on the 8-space Q,(O,(T)). Since
it is z-pure, V is a totally singular 2-space here, and Og(2) is transitive on such
2-spaces. Consequently G has just one class of z-pure Klein 4-groups. Since
(z, z,) is one such, Step 8 follows.

Step 9. E contains no element interchanging S, and S,. Suppose this is false, and
pick z,e E interchanging S, and S,. Then Cg(z, z1, 2) = (z, z;, z,)N with
N=D,. Let V = L(G), the 248-dimensional Lie algebra of G. Then Cy(z, z,, z5)
contains L(N), so if f = dim Cy(z, z,, z,) then f =28. On the other hand, by Step
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8, for each hyperplane D, of (z, z,, z,), we have, using [4, Corollary 9.2],
dim Cy(Dy) = dim (L(D,) © L(D,)) = 56.

Thus by Proposition 2.16, 6f +248 =7 x 56. This yields f =24, a contradiction.
This proves Step 9.

Step 10. There exists z, € E such that C5(z, z,, z,)° is conjugate to F. By Step 9,
we have E<§,5,= Cg(z, z;)°. Thus for z,€ E\(z, z,) the group (z, z;, z) is
contained in a maximal torus T of G. Since E is z-pure, this is a totally singular
3-subspace of Q = Q,(0,(T)) regarded as an orthogonal space for W€ = Og(2).
Since W is transitive on the set of totally singular 3-spaces in Q, we deduce that
{z,2;,7,) is conjugate to (ee| al i, j)={(Z(F)Nz°)=2Z, Hence
Cs(z, 21, 2,)° is conjugate to C;(Z,)°=F, as required for Step 10.

By Step 10 we may take
Colz,21, 2)°=F=1J, ... Jg,

and also (z, z;, z,) = Z, and E < Ng(F) N C5(Z(F)). Further, we may assume
that

JWhJJs <8y, JdsJgd;<S,.

Step 11. We have E < F. Suppose this is false, and pick x € E\F. As x € z© and
also x€S8.S,, (x) must act semiregularly on both {J,,/,, J5,J;} and
{J4s Js, J, J5}. Clearly then there exists R € A such that x interchanges [1;.xJ; and
[l;¢rJ;. Consequently we can find V <Z, with V =(Z,)* such that C5(V) =
RR,=D,D,, R, contains [l;cgJ;, R, contains [l.xJ;, and such that x
interchanges R; and R,. This cannot happen, by Step 9.

Step 12. Completion of the proof for the group G. We have Z,=(z, z;, z,) =
(eie; | all i, j) < E<F. By Step 2, any conjugate of z in F\Z(F) is of the form
a, ... ag or age, with R € A, r ¢ R. Since (Z,, age,) contains elements of ¢, any
element of E\Z, must be of the form a, ... ag. Further, by Lemmas 2.3 and 2.5, E
must contain elements a, ... agand b, ... bg. Thus by Step 7(iv), we have

E=A= <Zo, a;...ag, bl ven b8>'

All conclusions of the lemma for the algebraic group G = Eg are now proved.

Step 13. Completion of the proof for the finite group L. We finally verify the
statements of the lemma for the finite group L = G,. The group E is contained in
the o-stable group F =J, ... Js. Since o centralizes E, it centralizes Z, = (e;e; | all
i, j). It follows that o either fixes each J;, or has four orbits of length 2 on the J,.
Correspondingly, O”'(F,) is a central product of either eight copies of SL,(q) or
four copies of SL,(¢q?).

Suppose first that O?'(F,) = SL;(q)° ... °SLy(q) (eight copies). If E < O (F,)
then E is conjugate to a subgroup E; of SL,(p)e ... eSL,(p). Moreover we can
argue as before that Ng(E,)<Egp) and that E, is unique up to Ey4(p)-
conjugacy. Thus L = Eg(p) by the maximality of M, and the conclusion of the
lemma holds in this case. Now assume that E & O”'(F,). We may then take
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a=a,..age O”(F,) and b=b, ... bg¢ O°'(F,). Now M acts irreducibly on E
and M/C,(E)=<SLs(2). Moreover M/Cy(E) contains 2-elements such as a,a,,
s0 M/Cy(E)=SLs(2) (see [30]). Thus Ny(Z,) is transitive on (E/Z,)*. But
Np(Zo) cannot send a to b, since a € O (C(Z,)) and b ¢ O?'(C(Z,)). Hence this
case does not occur.

Finally, suppose that 0°'(F,) =SL,(¢%)e ... °SL,(¢?) (four copies). As in the
previous paragraph, the irreducibility of M on E and the existence of 2-elements
in M/Cy(E) imply that M/Cy(E) = SLs(2). Consequently N,(Z,) induces SL;(2)
on Z,. This is impossible since O”'(C,(Z,)) = 0°'(F,), a central product of only
four quasisimple groups, which cannot admit SL;(2).

Lemma 2.17 completes the proof of Theorem 1, apart from the demonstration
of the embedding L4(5) < E4(4), which, as pointed out in the Introduction and in
the proof of Lemma 2.10, is needed to show the non-maximality of the subgroup
5%.SL;(5) in Table 1 when p = 2. This embedding is exhibited in § 5.

3. Proof of Theorem 2

In this section we give a proof of Theorem 2. Thus let G be a simple
exceptional adjoint algebraic group in characteristic /, and let S be a subgroup of
Aut G such that D = (SN G)° is non-trivial, closed, and satisfies Conditions (1),
(2) and (3) of Theorem 2. Suppose that D is not parabolic or of maximal rank,
that is, D does not contain a maximal torus of G.

By Condition (2), the group E = Q,(0,(Cs(D))) is non-trivial. Clearly §
normalizes E, so by Condition (3) we have D = C4(E)" and Ng(D) = Ng(E). Let
Q=R,(D). If OQ+#1 or if r=1 then by [5,3.12], S normalizes a parabolic
subgroup P containing N(Q) or N(E), forcing D = P; but then D contains a
maximal torus, a contradiction. Thus Q =1, and so D is reductive. Moreover, if S
normalizes a connected subgroup K # 1,G then by (3), D = N(K)", and hence
N(K) contains no maximal torus. In particular Z(D)’=1, so D is semisimple. As
S normalizes DC(D), (3) gives C(D)’< D, whence C(D) is finite. Since r #1, E
consists of semisimple elements.

We claim next that if 15 E, <E, then Cg;(E,) contains no non-trivial normal
torus. For otherwise, if T<ICs(E,) with T a non-trivial torus, then D = Cg(E)°
normalizes T, and hence centralizes T, contrary to C(D) being finite.

As E lies in no torus, we see as in Lemma 2.4 that r =2, 3 or 5 and m(E) =2.
Suppose that for some e € E¥, Cs(e) is connected and has a factor A,. Then
since for semisimple x € A,\Z(A,), C, (x) has a normal torus, C(E) must
contain the factor A,. But then S normalizes the product of these factors A,,, and
the normalizer of this product contains a maximal torus, a contradiction. This
establishes the fact that for e e E¥, C(e) has no normal torus, and if C(e) is
connected, it has no factor A,. We conclude (cf. Lemma 2.6) that C(e) is as
follows:

G r C(e)
Fo2 B,

E, 3 (Az0Az0Ar)(wy)
E,; 2 Ayw;

E, 2 Dy
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When G = F,, we argue as in the last paragraph of the proof of Lemma 2.13 that
m(E)<2, whence E lies in a maximal torus, a contradiction. For G = Ee),, let
feE\{(e). If f € C(e)’ then Cg(e, f) has a normal torus, so f € C(e)\C(e)" and
E = (e, f). We now obtain a contradiction as in the third paragraph of the proof
of Lemma 2.11. When G =E,, the same argument gives E = (e, f) with
feC(e)\C(e)’. Then as in Lemma 2.15, D = C(E)’ = D,, N5(D) = (2* X D,).S;.
This is in the conclusion of Theorem 2. Finally, if G = E;, we argue as in Steps
8-11 of Lemma 2.17 that E < F = (A4,)® and E contains Z,= (Z(F)Nz%). As E
does not lie in a torus, E # Z,, so there exists f € E\Z,. Then C(Z,, f) has a
normal torus, which is a contradiction. This completes the proof of Theorem 2.

4. Proof of Theorem 3

Here we give the proof of Theorem 3. Thus let G be an exceptional simple
adjoint algebraic group in characteristic /, and let A be an elementary abelian
r-subgroup satisfying Conditions (a)~(e) of Theorem 3. The proof runs parallel to
that of Theorem 1 in § 2. Since N;(A) is finite, it is clear that A does not lie in a
torus of G, and Cg(A)’=1.

First, the proof of Lemma 2.4 gives

Lemma 4.1. (i) A=(a°NA) for ae A*.
(i) ris2,30rS, and r=5 only if G =E,.
(i) m(A)=2; and m(A)=3 if (G, r) is not (Es, 3) or (E;, 2).

The fact that C5(A)° =1 implies the following analogue of Lemma 2.5.

Lemma 4.2. For a e A%, Cs(a) does not contain a central torus. Moreover, if
Cg(a) has a normal torus then A £ Cg(a)’.

Lemmas 4.1 and 4.2 give

Lemma 4.3. For a € A®, the possibilities for Cg(a) are those given in Table 3 of
Lemma 2.6.

Lemma 4.4. (i) Suppose |Z(G)|=r. Then E is elementary abelian or
extraspecial.

(i) For ae A®, Cs(a)° is semisimple.

Part (i) of Lemma 4.4 is proved as in Lemma 2.9(i). If (ii) fails, we argue as in
Lemma 2.9 that |A| = r?; but then Cg(A)° # 1.

Now the proofs of Lemmas 2.10-2.17 give Theorem 3. Note that these proofs
are sometimes greatly simplified by fthe hypothesis of Theorem 3, since
C5(A)° =1 and the conclusions of Lemmas 2.1-2.3 are subsumed by the much
stronger hypothesis (¢) of Theorem 3.
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5. The embedding L,(5) < Eq(4)

In this final section we show that Eg(4) contains a subgroup L,(5), and also that
for p#2, 5, the algebraic group Eg over the algebraic closure of F, does not
contain L,(5). As a consequence, the local subgroup N(E)=5°.SL;(5) of E4(4)
constructed in Lemma 2.10 is non-maximal (see Table 1 of Theorem 1).

THEOREM S5.1. Let G be the simple algebraic group of type Eg over the algebraic
closure of F,, where p is prime and p #5. Then G contains a subgroup isomorphic
to L4(5) if and only if p =2. Moreover, this embeds L4(5) in Eg(4).

The subgroup L,(5) will be constructed as the group generated by two
conjugates of the local subgroup Ng(E)=5".SL,(5) constructed in Lemma 2.10.
Write

P = Ng(E).

We require a preliminary lemma concerning the group P.
LEMMA 5.2. P is a split extension of E by SLs(5).

Proof. Let e € E¥, and consider Cp(e). This has the form F.SL,(5), where, in
the notation of the proof of Lemma 2.10, F={a, b, a, b,) =5"** an
extraspecial group. By the construction of E (Lemma 2.10), Cs(e) = X, X, with
each X; =SLs. Since Cp(e) normalizes each X;, we conclude that Cp(e)/{e) acts
completely reducibly on F/{e). Thus F/(e) has precisely six proper non-trivial
Cp(e)/{e)-invariant subgroups. Those lifting to extraspecial groups 5'*? come in
pairs (orthogonal complements under the action of Spu(5) on F). Since E is
abelian, Cp(e) therefore normalizes a complement E/{e) to E/(e) with E
abelian. As SL,(5) has trivial first cohomology on the natural 2-dimensional
module, we have E = (e) X S with S invariant under SL,(5). It now follows that a
Sylow S-subgroup of P splits over £, and hence P splits, as required.

Proof of Theorem 5.1. In view of Lemma 5.2 we may write P= ED, with
D =SL,(5). Let T=Z,X Z, be a Cartan subgroup of D, and let U be a Sylow
S-subgroup of P such that T <Np(U) and U= E(UND). Consider the six
T-composition factors of U. Each has centralizer Z, in 7, and a direct check
shows that these six subgroups of 7 are distinct.

It follows that there are precisely six T-invariant subgroups of U of order 5. We
call these positive root subgroups; thus a positive root subgroup is determined by
its centralizer in 7. The group D contains three other T-invariant subgroups of
order 5. These are the usual root groups in SL;(5) corresponding to negative
roots. Each has centralizer in T equal to that of some positive root group, and we
call such a subgroup the opposite root group.

Label root subgroups as follows: E=U,U,,pU,sp+y, With () =Usips,
Write D = (Utﬂ, U.,), where notation is chosen so that S = U,Ug., (here S is
the group constructed in the proof of Lemma 5.2). The usual commutator
relations hold among the root groups in P, this group being isomorphic to a
maximal parabolic subgroup of L,(5).
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Now E =U,Ug,,Uysp+, (Where E is as in Lemma 5.2). Consider E(U) <
Csl(e) = X, X,=SLs°SLs. The group (U.g) is diagonally embedded here (that
is, it intersects each X; trivially), and it normalizes the intersection of E with each
X,. But F intersects each X; in an extraspecial 5'*2, and the action of (U.z) on
E/(e) is irreducible. Consequently E N X; = (e) for i =1, 2. From our construc-
tion of E in Lemma 2.10, we thus see that E is conjugate to E. _ _

Hence P = N5(E) = E.SL;(5), and there is a unique complement D to E which
contains T. Then D contains precisely six T-invariant subgroups of order 5, and
we have D = (Us,, Usp). That is, we have a new root subgroup U_,, opposite
to U,.

Set M = (Usq,, Usg, Uy, ). We shall show that if p =2 then M = L(5). To do
this, it suffices to show that [{ Uy, ), U_,]=1; for then [(U.,), (Us,)]=1 and
an application of the Curtis—Tits relations [12, Theorem 1.4] implies that M is an
image of L4(5). _ _

To this end, set V=U,.gUsspsy V=UpiUsipr, and R=VVUz=
Un+pUarp+yUsUpsy We check that R=5* and also Np(V)® =R(U,,) and
NI_’(V)(W) = R < U:ta' > *

We now consider Ng(R). Working in Cg(e) we see that C5(V)" is a maximal
torus, say H, so Np(V)< Ng(H). As Np(V)/V is irreducible on R/V and 5° does
not divide |W(Eg)|, we have R=<H. Hence Ng(R) normalizes C;(R)" = H.
Consider the actions of (U.,) and (U.,) on R. We claim that these groups
commute modulo H. To see this, note that N;(R)' induces on R an irreducible
subgroup of SL5) of order dividing |W(Eg)|, and containing a S-element
centralized by SL,(5) (corresponding to the image of U, X (U,, ) < P). It follows
that Ng(R)'/H == SL,(5)°SL,(5), corresponding to a subgroup Q;(2) X Q3 (2) or
Q7 (4) in Qg(2). The former subgroup comes from W(A4,) X W(A,), which does
not act faithfully and irreducibly on R. Hence N;(R)'/H corresponds to Q7 (4).

Let ¢ be the involution in T centralizing (U,,) and (U.,). Then (tH) =
Z(N(H)/H). Hence Cyry(t) = Q:(02(H)).(SL,(5)°SLy(5)), showing that (U, )
and (U, ) commute modulo Q,(O,(H)).

If p=2 then O)(H)=1, so (U.,) and (U.,) commute, which implies that
M = L(5). Moreover, all the groups occurring in the proof exist in E4(4), so this
embeds L,(5) in Eg(4), as required.

It remains to show that if p 2, 5 then G has no subgroup L,(5). To do this,
we shall demonstrate that the extension Cy gy (f) =2%.(SL,(5)° SL,(5)) does not
split. This implies that (U.,) and (U,,) do not commute. Hence if G had a
subgroup L,(5), we could have performed all the above calculations within this
subgroup to obtain a contradiction.

Thus suppose for a contradiction that the extension splits. We have C ~ry(t) =
2°.(Alts X Alts) with central involution . This is a subgroup of Cy(t) = Dy. Let
N =2° be the image of the normal 2° in Cg(t)/(t) = PQ,4(K), where K = F,. Let
N be the preimage of N in Q4(K), and let C be the preimage of Cyry(¢)/(t) in
£216(I<)'

We claim that N is extraspecial. Otherwise, it is abelian (since the top factor
Alts X Alts acts irreducibly on N), and an easy argument using the action of
elements of order S shows that N =N, x (z), where z is the central involution in
Q,6(K) and N; is normal in C. The action of C on N, is Q7 (4), which has orbits of
size 75 and 180 on the linear characters of N,, and hence by Clifford’s theorem, C
cannot lie in Q,,(K), a contradiction. Thus N is extraspecial, as claimed.
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We now use an argument of R. L. Griess to complete the proof. We are
assuming that the extension C = N.Q;(4) splits. Take a subgroup A of type
€Q;(4). There are an involution a€ A and a singular vector s e N/{z) for
which s*=s + n, where n is a non-singular vector fixed by A and n lifts to an
element of order 4 in N. In the group N the preimage of (s, n) is a dihedral
group with a inverting the element of order 4, which corresponds to n. But A
normalizes this Z, and A = A’'. This is a contradiction, completing the proof of
Theorem 5.1.
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